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In the space of all polynomial splines on an infinite equidistant grid with fixed
odd degree and with fixed period, the Lagrangians belonging to the grid-points as
nodes form an extremal basis with respect to the supremum-norm. This means that
no element of the basis can be approximated within the span of the other elements
better than by zero. The result is carried over to the nonperiodic cardinal-spline
case. Moreover, an intrinsic insight into the behaviour of the Lagrangian splines is
obtained.

1. INTRODUCTION AND STATEMENTS OF THEOREMS

In [3] we introduced our concept of extremal bases in normed vector
spaces. Such a basis consists of elements which cannot be approximated by
linear combinations of the other ones better than by zero. Hence it consists
of "outmost linearly independent" elements and furnishes (in some sense) a
most stable representation of the space elements by their set of coefficients.

We also investigated conditions, where a Lagrangian basis is extremal
with respect to the supremum-norm. This is the case if the norm of all
Lagrangians is exactly one, and hence minimal. For instance, the unique
extremal basis in the space of polynomial functions on [-1, 1] of degree n
consists of the Lagrangians with respect to the Fekete-points. In case of
trigonometric polynomials, an extremal basis is obtained by choosing
equidistant nodes. In this case, and apart from a constant factor, the
Lagrangians are shifted Dirichlet-kernels.

In what follows, we are concerned with polynomial splines of odd degree
m = 2r + 1 on the grid 71. First let Sr:; denote the space of all bounded
functions s E Cm_I(IR) which aggree with a polynomial of degree m on every
interval of the form [j,j + 1], j E 71. The space is provided with the
supremum-norm

Iisil :=sup{ls(x)l:xE IRf·
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In addition let S~, N E rN, be defined to be the subspace of S':: consisting of
the elements with period N. Then, inspired by the trigonometric case, we
may hope that in all spaces S~, N E rN U {oo }, the Lagrangians belonging to
the grid-points as the interpolation nodes perform an extremal basis.

For NE rN, these Lagrangians are the elements It) E S~, jE {O, 1,...,
N - I }, defined by

kE {O, I,...,N-I},

6jk denoting Kronecker's symbol. For N = 00, they are the elements
1(00) E Soo J' E lL with
1 m' ,

k Ell.

THEOREM 1. Let m E rN be odd. Then the Lagrangian splines
{ljOO) Ij Ell} and {It) Ij = 0, 1,... , N - I} perform an extremal basis for SC;;:
and S~, NE rN, respectively.

By the arguments used by us in [3], Theorem 1 is an immediate conse
quence of

THEOREM 2. Let m E IN be odd. Then lilt) II = 1 for N = 00 and all
jEll and for N E rN and j E {O, 1,..., N - 1}.

The proof of Theorem 2 will be performed by the use of results and ideas
of Meinardus and Merz [1] and of ter Morsche [2]. The qualitative
behaviour of periodic Lagrangian splines has been discussed already by
Richards [4], in case m = 3 and m = 5 also by Schurer [5, 6], but no proof
of Theorem 2 seems to be known. Moreover, we shall obtain a more intrinsic
insight into the behaviour of the Lagrangian splines, which is as in the
figures in Section 3.

2. PROOF OF THEOREM 2

If m = 1, then the statements of Theorem 2 are obviously true.
Next let m = 2r + 1, r ErN. Because of It)(t) = I~N)(j + t) it suffices to

prove the statements for j = 0.
To begin with, let us consider the periodical case where N E rN. Let

(1)

for t E IR, jEll. By the uniqueness of interpolating periodic splines, we have

(2)
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for t E IR, j E 1. Following Richards [4], the qt)(t) have fixed sign for
t E [0, 1], where

Iqtl(t)1 = (-I)j qt)(t)

for Y= 0,1, , N - 1, if Nis odd,
U=O, 1, , [(N-l)/2], if Niseven.

(3 )

On the other hand, counting the zeros of the derivatives, we can easily prove
that nN)(t) = q~N)(t) attains the value one in [0,1] only once, namely, for
t = 0, while it vanishes for t = 1. Hence we obtain from (2) and (3) the
estimate

fortE [0, 1]. (4)

(5)

The problem now is whether any other qt)(t) exceeds one in absolute value
for tE [0, 1].

Let

(
O)m 1Hm(t,z):=(1_z)m+l t+z- -_=(1_z)m+l \' (t+v)m z"
oz 1 - Z I'~O

denote the generalized Euler-Frobenius polynomial of degree m in each
variable. Then, following Meinardus and Merz [1], we have

(Nl(t) =~ N~,l Hm(t, ,#) C u+ 1)#

qJ N #"";'0 Hm(1, ,#)

with

for t E [0, 1], and due to the definition of H m' the identities

z mHm(t,z-I)=Hm(1-t,z),

hold. In addition it follows from Hm(t, 0) = tm and (6) that

(6)

(7)

Hm(t, z) = (1 - t)m zm + terms of lower degree in z. (8)

Due to ter Morsche [2, Theorem 3.11, the roots of Hm(t, z) with respect to z
for fixed t E [0, 1] are real, nonpositive and simple, while Hm(O, z) vanishes
for z = °by (7). Let Hm(O, z) have the roots
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By (7) and (6), Hm(1, z) possesses the roots zl"'" zm_1 and zo:= -00, while
zl' = z;;;~1' for J1 = 0, I,... , m is valid. Hence, recalling that m = 2r + 1, the
order of the roots is more precisely

Zl < ... <zr<-I <zr+l < ... <zzr<Zzr+l=O. (9)

Now, as remarked by Meinardus and Merz [I, p. 192], the formulation being
not quite correct, the roots of H m(O, z) are separated by those of H m(t, z) for
0< t < I (it can be proved that the roots of Hm(t, z), °~ t ~ I, are strictly
decreasing). From this and (8) it follows that

for J1 = 1,2,... , m (10)

holds for °< t < I, if H~ denotes the partial derivative of H m with respect to
the second argument.

By (9), H m(1, z) has no root on the unit circle (which is not true if m is
even). Besides, the residual of

N-l I N N-l
\' ---c;-z__
....... z - 1"1' - ZN - I
,,=0 "

at (I', J1 {O, I, ... , N - I}, is one. Hence we obtain from (5) the representation

(N)()_ I I' Hm(t,z) zN-i- 1 dz
qi t --. . N .-

2m, ['-[l Hm(1, z) z - I z

if [I and [z are positively orientated circles with zero as center and radius
PI and pz =p~l, respectively, where PI> I is sufficiently small.

Replacing z by z - I and by the use of (6) we obtain

r Hm(t, z) . ZN-i- 1
• dz = j' Hm(1- t, z). zi

'_[lHm(1,z) zN_I Z '[I Hm(O,z) zN_I

dz

z

Inserting this above we get finally by the use of (7)

\N)(t)=_I_
J
, Hm(t,Z)ZN-i-

1
+Hm(1-t,z)zi dz (11)

qJ 2ni [, H m(O, z )(ZN - I)

for t E [0, I], j E {a, I,... , N - I}.
The singulatities of the integrand of (II) in the outer region of [I are

located at z I"'" Z r and possibly at infinity, but nowhere else. It follows from
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(12)

(8) that the residual at infinitely is -(1 - t)m if j = 0, _tm if j = N - 1 and
zero else. Since Z I , .•. , Z r are poles of the first order, we therefore obtain from
(11) the fundamental representation

qjN)(t) = (1 - t)m 00.j + tmON_1,j

_ \-, Hm(t, zit) z~-j-l + Hm(1- t, zJ <
It~ I H~(O, ZIJ(Z~ - 1)

for tE [0, l],jE {O, 1,...,N-l}.
As a first consequence of (12), the limit

( ~) I (N) ( m.l: \r, Hm(t, zit) Z;:j-l
q.~ (t):= im q. (t) = 1 - t) U o ·-

J N~oo J .J ...... HZ (0 Z )
,.u= J m' u

exists for tE [0, l],jE 1N 0 • Note that it follows from (4) that

(13)

for 0":;;; t":;;; 1 (14)

is valid, while (3) yields together with (10)

(-I)jq\OO)(t)=(l-t)m o .+ ~ Hm(t,ZIt)lz l-j-l~O
J O.J ...... HZ (0 z) It "", •

.u=l m , I),

Hence we obtain by (9) and (14) the inequalities

1 ? q~OO)(t)? -q\OO)(t)? q~OO)(t)? -q~OO)(t)? ... ? O. (15)

for arbitrary t E [0, I].
The convergence in (13) is uniform for all t E [0, I] and any finite set of

j - s. This means that I~N)(t) converges uniformly on every compact set in IR,
and this to an element of S,::. Because of I~N)(j) = 0 for j E 1\{O I, this
element must be the Lagrangian cardinal spline I~OO), defined above, where

fortE[O,ll,jElN o'

This, together with I~OO)(-x) = I~OO)(x) for x E IR and with (15), yields

as the assertion of Theorem 2 is.
Next let N E IN be even. Then we obtain from (12), (3) and (10)

0":;;; (-l)j qt>Ct)

= (1 _ t)m 0
0

.+ ±Hm(t, zit) Izit IN -
j

-
1

- Hm(1 - t, zit) IZIt Ij
,J 1t~1 H~(O,zlt)(lzltIN-l)
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for tE [0, IJ,jE {a, 1,..., [(N-l)/2]). Hence it follows that

(_1)/-1 qj~\(t) - (-1)/ qjN)(t)

~ (1 _ )m ;: \' Hm(t, z/l) IZ/lIN-/-I +Hm(1 - t, zJ IZ/ll/~ 1

- t UO,/_I+.:.... Z( I IN/l=1 HmO,z/l)(Z/l -1)

X([z/lI-I)~O

and, because of (4), that

0<; ... <; (-1)/ qjN'(t) <; (_1)/-1 qj~)1 <; ... <; q~N)(t)";; 1 (16)

holds for t E [0, 1J, j E {I, 2,..., [(N - 1)/2]}. From this the assertion of
Theorem 2 follows in view of (2).

Finally let N be odd. In this case it follows from (3), (10) and (12) that

0";; (-1)/ q]N)(t) = (1 - t)m °0 ,/ + tmoN_1,/

\' Hm(t, Z/l) [Z/lIN-/-l +Hm(1-t,z/l)lz/ll/

+ 1l~1 H~(O,z/l)(lzI'IN + 1)

holds for t E [0, 1] and j E {O, 1,... , N - I}. In the sum, each term is of the
form

where a, b >0, x > 1. Hence it is a convex function with regard to j in°";;j ,,;; N - 1. The same is true for the whole sum and also for the two
preceding terms. Hence (-Ii qjN)(t) = Iq]N)(t)1 is convex for fixed t E [0, 11
with respect to j varying in {O, 1,..., N - I}. This implies for t E [0, 1],
j E {I,..., (N - 1)/2} the relation

Iqt)(t)l,,;; max{lqj~)I(t)l, Iqt'~/(t)I}

= max{1 qj~)1 (t)l, Iqj~)r<1 - t)I};

compare (2). From this it follows by symmetry in t anf 1 - t that, as well,

max{1 qt)(t)l, IqjN)(1 - t)l} ,,;; max{1 qj~\(t)l, Iq}~\(1 - t)1} (17)

is valid. Especially we find that

holds for j E {l, 2,... , (N - 1)/2}. Because of (4), the assertion of Theorem 2
is now a consequence of (12), and the theorem is proved.
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FIG. 1. Lagrangian cardinal spline I~Wl according to (15).
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FIG. 2. Lagrangian periodic spline ni\l according to (16), if N is even.
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FIG. 3. Lagrangian periodic spline I~'i) according to (18), if N is odd.
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6. QUALITATIVE BEHAVIOUR OF LAGRANGIAN SPLINES

Formulae (16) and (18), together with (15), give a more precise
description of the qualitative behaviour of the periodic Lagrangian splines
than has been given already by Richards [4]. Moreover, we obtained a
corresponding result for the nonperiodic cardinal Lagrangian splines. The
result is as could be expected from the usual polynomial interpolation; it is
intuitively demonstrated in Figs. 1,2,3.
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